Service Oriented Architecture
(SOA)

Intelligent Infrastructure Design for the Internet of Things
Antonio Navarro

References

B.V. Kumar, P. Narayan, T. Ng, Implementing SOA Using Java EE,
Addison-Wesley, 2010.

Mark D. Hansen, SOA Using Java Web Services, Prentice Hall,
2007

Russel Butek, Which style of WSDL should | use?, 2003,
https://www.ibm.com/developerworks/library/ws-whichwsdl/

Thomas Erl, SOA Principles of Service Design, Prentice Hall,
2008.

Index

Introduction

Service Oriented Architecture (SOA)
Objectives and benefits of SOA

SOA design principles

SOA or not SOA

Web services

REST Web Services

SOAP web services

SOAP vs. REST

Introduction

* Today, there are many solutions for business applications with
industrial dimensions.

e All have advantages and disadvantages

 The most important thing is to be clear about when to apply
each one.

Type of Solution Use of J2EE implementation examples
application frames Pres. Business Integration
Corporate Multilayer No JSP SAs POJOs + DAOs POJOs
architecture transfers
Yes JSF SAs POJOs + JPA
entities
+ Distributed RPC (Remote No JSP (client) SAs POJOs + DAOs POJOs
Logic Procedure Call) RMI +
transfers
Yes JSF (client) Session EJBs + JPA
entities
Heterogeneous + SOA No JSP (client) SAs POJOs + DAOs POJOs
platforms transfers + JAX
WS / JAX RS
Yes JSF (client) Session EJBs JPA
JAX WS / JAX
RS + entities

Applicable solution based on application requirements

Introduction

* We have already seen the multilayer architecture

 Remote object invocation in practice is closely linked to
implementation platforms.

 We will now focus on service-oriented architectures, more
independent of the implementation platforms

SOA

* Service-oriented architecture (SOA) is an architectural model
that attempts to improve the efficiency, agility and productivity
of an enterprise by placing services as the primary method
through which the solution logic is represented.

* |n principle, the architecture itself should be differentiated
from the elements of service-oriented computing, but in many
contexts it is used interchangeably.

SOA

Two uses of SOA must be distinguished:

— As a logic invocation mechanism for external systems, i.e., as an API
to be used by the integration layer of another system

— In addition, as a logic invocation mechanism for its own internal
system

Objectives and benefits of SOA

* We can list the following:
— Increased interoperability
— Increase in the federation
— Increasing platform diversification options
— Greater alignment of business and technology
— Increased return on investment
— Increased organizational agility
— Reduction of ICT burden

Objectives and benefits of SOA

* Increased interoperability

— In this context, interoperability means data sharing between
applications.

— Exposing an application's services through SOA facilitates such
interoperability.

Objectives and benefits of SOA

Project Team B

Increased interoperability in SOA

Objectives and benefits of SOA

* |Increase in the federation

— A federated computing environment is one where resources and
applications are linked together while maintaining their autonomy
and self-governance.

— The exposure of services through SOA naturally favors the federation
of functionalities.

Objectives and benefits of SOA

Services establishing a federated set of encapsulated functionalities

Objectives and benefits of SOA

* Increasing supplier diversification options

— Diversification allows you to choose the best product from each
supplier and use them in an integrated manner

— SOA naturally allows the use of a vendor regardless of its
implementation platform.

Objectives and benefits of SOA

Validate Java
Timesheet

DB2

‘ Java ‘ ‘ NET ‘
— Timesheet — |

‘ — Invoice ‘

SQL

10g Server

Services implemented on different platforms
Intelligent Infrastructure Design for l1oT - MiOT UCM
Antonio Navarro

Objectives and benefits of SOA

e Greater alignment of business and technology

— Alignment aims to ensure that the IT system supports a company's
changing requirements as quickly as possible.

— To the extent that the system is designed around fine-grained
services, the evolution of the system will be facilitated, and thus the
alignment between business and technology will be facilitated.

Objectives and benefits of SOA

Run Billing
Report
Business Process
Definition
—> Invoice
Business Entity
Model
— Timesheet

Fine-grained services favor evolution and hence alignment

Intelligent Infrastructure Design for l1oT - MiOT UCM

Antonio Navarro

18

Objectives and benefits of SOA

* Increased return on investment

— The higher the return on investment, the higher the profitability of an
organization.

— The ability to reuse and evolve an SOA solution favors increased
profits, despite a higher initial investment.

Objectives and benefits of SOA

traditional

unit of solution t <nd rd
logic year year year
X y yx2 yx3
delivery cost ROI
service-oriented " Ind 3rd
unit of solution - —_—
N year year year
logic
%+ 30% yx2 yx5 yx9
delivery cost ROI

Comparison of return on investment in classic and SOA solutions
Intelligent Infrastructure Design for l1oT - MiOT UCM
Antonio Navarro

Objectives and benefits of SOA

* |Increased organizational agility

— Agility is the efficiency with which an organization can respond to
change.

— As long as there is a good IT support and alignment between business
and system, things that favor SOA, the organization will be more
agile.

Objectives and benefits of SOA

Build 100% of required logic

Cost=x Timesheet

Effort=y Validation

Tlime=z Solution
time to market >

Build 35% new logic
Reuse 65% existing logic

Timesheet

Cost = x/2.5 Validation
Llak At o -
Effort =y/3 Solution
Time =z/3 A
service
inventory

Comparison of changeover time in a traditional and SOA application

Intelligent Infrastructure Design for 1oT - MiOT UCM
Antonio Navarro

22

Objectives and benefits of SOA

 Reduction of the ICT burden

— The lower the load of any component of a company, the higher the
sales.

— Service-oriented architecture allows for a more agile ICT department
that reduces the burden on the organization.

Objectives and benefits of SOA

enterprise
with an
inventory of
integrated
applications

the same
enterprise
with an
inventory
of services

Service organization allows for less costly IT departments

Intelligent Infrastructure Design for l1oT - MiOT UCM
Antonio Navarro 24

SOA design principles

 There are a number of principles when designing services:
— Standard service contract
— Low service coupling
— Service abstraction
— Service reusability
— Service autonomy
— Stateless services
— Ability to find services
— Ability to compose services

SOA design principles

— Ability to find the service
— Service Componentization

e Standard service contract

— Services express their purpose and capabilities through a service
contract. For example:
 WSDL
XML Schema
e Description WS-Policy
— This is the most important principle

SOA design principles

* Low coupling of services

— Coupling is the level of connection or relationship between two
elements.

— Low coupling of services promotes no dependency between services,
nor access to service implementations by jumping their interface.

e Service abstraction

— This principle promotes concealing as many details of the service
implementation as possible.

— In other words, it promotes minimal and abstract interfaces

SOA design principles

* Reusability of services

— This principle promotes the positioning of services as business
resources independent of specific functional contexts.

— Thus, the services are useful for more than one purpose

* Autonomy of services

— This principle determines that services must be able to perform their
functionality consistently and reliably.

— For this, the implementation of such services must have a significant
degree of control over its environment and resources.

SOA design principles

e Stateless services

— Managing excessive status information can compromise the
availability of a service and limit its potential for scale.

— Therefore, the services should only have status in very specific and
determined cases.

SOA design principles

* Ability to find services

— To increase ROl and leverage services, services should make
clear what their functionality is:
* Purpose
e Capabilities
* Resource constraints

— Such functionality should be made clear regardless of the
existence of mechanisms such as service registries.

SOA design principles

* Ability to compose services

— As the sophistication of SOA solutions grows, so does the complexity
of service composition configurations.

— Therefore, the ability to compose services is essential in advanced
applications.

SOA design principles

 The above principles lack the concept of interoperability.

* |t has not been made explicit, as it is assumed to be a

fundamental requirement of SOA and each of the above
principles.

SOA design principles

e Consistent application of these eight design principles
produces designs with:
— Improved consistency in the representation of functionality and data
— Reduced dependencies between logical solution units
— Reduced knowledge of logic design and its implementation

— Increased ability to reuse a logical solution element for multiple
purposes

SOA design principles

— Increased opportunity to combine logical solution units in different
configurations

— Higher level of behavioral prediction
— Increased availability and scalability
— Increased knowledge of available logical solutions

SOA or not SOA

* There are some problems that non-SOA architectures can
present:
— There may be redundant functionality
— This makes the development process inefficient.
— It causes the existence of unnecessary functionality in the company.

— This leads to heterogeneous platforms, complex infrastructures and
convoluted architectures.

— Integration becomes a constant challenge

SOA or not SOA

 The SOA architecture has several advantages:
— Increased amount of solution-independent logic
— Less application-specific logic
— Reduction in logic volume
— Inherent interoperability

SOA or not SOA

* |ncreased amount of solution-independent logic

— Within an SOA solution, units of logic (services) encapsulate
functionality that is not specific to an application or business service.

— These elements are reusable TICS elements that are independent of
the solution.

Business
Process
A

SOA or not SOA

Business Business Business Business Business
Process Process Process Process Process
B C D E F

business process agnostic services

Services as reusable logic elements

Intelligent Infrastructure Design for loT - MiOT UCM
Antonio Navarro

38

SOA or not SOA

* Less application-specific logic
— By making services that are not specific to an application or business,
the amount of application-specific logic is decreased.

— This blurs the concept of independent application.

SOA or not SOA

Business process-specific logic = 100%

Businiess Application A

Process —
A

Number of services required to automate Business Process A=3
Mumber of business-process-specific services = 1
Business process-specific logic = 40%

Service Composition A

Solution-specific logic reduction

Intelligent Infrastructure Design for loT - MiOT UCM
Ankisibgenidntastructure Design for 1oT - MiOT UCM 40

Antonio Navarro

SOA or not SOA

* Reduction in logic volume

— The volume of the solution logic is reduced as services are shared
and reused by different business processes.

SOA or not SOA

quantity of overall
automation logic = x

enterprise with an inventory of standalone applications

quantity of overall
automation logic = 85% of x

enterprise with a mixed inventory of standalone
applications and services

quantity of overall
automation logic = 65% of x

Logic volume in classic,
mixed and SOA

Intelligent Infrastructure Design for loT - MiOT UCM . .
applications

Antonio Navarro enterprise with an inventory of services

42

SOA or not SOA

* |Inherent interoperability
— SOA solutions involve aligned logic solutions

— Thus, service contracts and their underlying data models provide a
mechanism to increase interoperability.

SOA or not SOA

service
inventory

service
composition

Consistent set of services increases interoperability and composability

Intelligent Infrastructure Design for l1oT - MiOT UCM
Anhdigldigentdpiastructure Design for loT - MiOT UCM

Antonio Navarro

44

SOA or not SOA

* SOA architecture also presents a number of challenges:
— Increased design complexity
— Need for design and architectural standards
— Pre-listing of all services prior to their implementation
— May hinder the application of agile methodologies.
— Forces the presence of an authority in the management of services

* Therefore, an SOA solution should only be applied when
strictly necessary.

Web services

 SOA is a generic architecture independent of concrete
implementations.

* CORBA can be an SOA implementation

* |t is common to speak of web services as a mechanism for SOA
implementation.

Web services

* There are several definitions, but | am not convinced by any of
them

* | would say that a web service is an element of logic invocable
over the network and whose client only knows the type of the
input information output, and the implemented functionality,
i.e., it does not know its implementation platform

Web services

* There is a first generation of web services characterized by the
use of:

— Web Services Description Language (WSDL)

— Simple Object Access Protocol (SOAP)

— Universal Description, Discovery and Integration (UDDI)
— WS-I Basic Profile

Web services

Service
Registration
(UDDI)
discover and .
retrieve publication
(WSDL) (WsSDL)
. Service
A]E)pllc;nt Provider
or the Message
service exchange
(SOAP)

First generation of web services

Web services

* There is a second generation of web services based on
extensions to the first generation web services. Among others:

— WS-Security Specification and Frameworks
— WS-Addressing Specification

— WS-Reliable Messaging Specifications

— WS-Business Process Execution Language
— WS-Choreography Definition Language

— WS-Metadata Exchange Specifications

Web services

* There are two implementations of web services:
— REST Web Services
— SOAP web services

__ReST T

Message format XML, JSON XML within SOAP
Interface definition itis not necessary = WSDL

Transportation HTTP HTTP, JMS, FTP, etc.

Differences between REST and SOAP web services

Intelligent Infrastructure Design for loT - MiOT UCM
Antonio Navarro

51

REST Web Services

 REST web services are based on Roy Fielding's Ph.
 REST-style, or RESTful, web services are referred to as RESTful
* They are based on a series of principles:

— RESTful services are stateless. Each request from the client to the
server must contain all the information necessary to understand the
request, and cannot take advantage of any context stored on the
server.

REST Web Services

— Web services have a common interface. This usually means that the
only operations allowed are those provided by the HTTP protocol:
GET, POST, PUT and DELETE.

— REST architectures are built on resources that are uniquely identified
by URIs. Thus, each URI represents a different function and, by
extension, a different data.

— REST components manipulate resources by exchanging
representations of them. Thus, information is exchanged in XML
format.

REST Web Services

 Example of REST web service invocation:
URL url = new URL("'http://localhost:8080/RESTplano/saluda
?

firstname:Charlton&lastnameiHeston");

HttpURLConnection with = (HttpURLConnection)
url.openConnection();

con.setRequestMethod(""GET™);

InputStream In = con.getlnputStream();

byte[] b = new byte[1024];

int result = 1In.read(b);

while (result !'= -1) {
System.out.write(b,0,result);
result =in.read(b); }

in.close();

con.drisconnect();

REST Web Services

 Example of REST web service implementation:

public class Saluda extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

String name = reqg.getParameter("name');
String lastName= req.getParameter ("' lastName');

GreetingWSB greetingWSB= new GreetingWSB();

String reply= greetingWSB.greet(firstname, lastname);
res.getWriter(). write(reply);

}
}

REST Web Services

 The above example does not use Java-specific frameworks for
the implementation of REST web services, such as:
— JAX-RS (Java API for RESTful Web Services)
— JAXB (Java Architecture for XML Binding)

SOAP web services

* SOAP web services use SOAP to

— Invoking web services described through WSDL interfaces

— Encode the input and output parameters of the invoked service in
XML format.

* They require a mechanism to translate:
— Service requests in logic elements
— Parameters of a programming language in other languages

SOAP web services

Invocation Subsystem Invocation Subsystem
(Client Side) (Server Side)

-

param
Request : Request : |
SOAP SOAP m

|
|
| Target :

Java Object
Response : Response ;
soaP | soap return
—]
]

SOAP Message
Exchange
(Specified by WSDL)

Y

i

@ ww

y

SEl : Java Proxy

B i
V4

Java Method
Invocation

Java Method
Invocation

— e e e e— —

SOAP web services invocation and response

Intelligent Infrastructure Design for loT - MiOT UCM
Antonio Navarro

58

SOAP web services

@ | |lsoFe
PO Number, A
Order It
B rder ltems WSDL
@
Customer Order Purc!wase Order
e ||©
Order Canfllmatlon Authorization,
@ Payment Terms Java EE 5
WSDL J
Order Managament
SOA Composite App
A
Java EE 5
il
Item Availability Order ltems
® L »
S0ap
WSDL
Inventory
Managment
Service
NET

Intelligent Infrastructure Design for loT - MiOT UCM

Antonio Navarro Example of an application based on SOAP web services

59

SOAP web services

* The basic structure of a SOAP message is:

<<SOAP-ENV:Envelope >>
jSOAP -ENV:Header :i
</SOAP-ENV:Header >
jSDAP-ENV:BGdy :i
</SOAP-ENV:Body >

QiSDAP-ENV:EnvelOpe r>

[MIME Attachment]

[MIME Attachment }

| MIME Attachment]

I MIME Attachment I

Basic structure of a SOAP message
Intelligent Infrastructure Design for l1oT - MiOT UCM
Antonio Navarro

SOAP web services

e Where:

— Envelope: it is the root element. It stores namespace and coding
style information.

— Header: optional, but not usually omitted. They provide services to
the cargo carried in the Body element.

— Body: is mandatory. Contains the payload of the SOAP message to be
processed by the destination endpoint.

SOAP web services

* SOAP request example
<envl:Envelope xmlns:envl="http://schemas.xmlsoap.org/soap/envelope'>
<envl:Body>

< getord:getOrdersDates
xmIns:getord="http://www.example.com/oms/getorders'>
<getord:startDate>2005-11-19</getord:startDate>

<getord:endDate>2005-11-22</getord:endDate>
</getord:getOrdersDates>.
</envl1:Body>
</envl1:Envelope>

SOAP web services

* Example of SOAP response

<envl:Envelope
xmIns:envl="http://schemas.xmlsoap.org/soap/envelope’>

<envl:Body>
< getord:getOrdersDatesResponse
xmlns:getord="http://www.example.com/oms/getorders'>
< Orders xmlIns="http://www.example.com/oms""
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation=""http://www.example.com/oms
http://soabook.com/example/oms/orders.xsd'>

SOAP web services

< Order>
< OrderKey>ENT1234567</0rderKey>.
< OrderHeader>

<SALES ORG>NE</SALES ORG>.
<PURCH_DATE>2005-11-20</PURCH_DATE>
<CUST_NO>ENT0072123</CUST_NO>
<PYMT_METH>PO</PYMT_ METH>.
<PURCH_ORD_NO>P0-72123-0007</PURCH_ORD_NO>
<WAR_DEL_DATE>2006-12-20</WAR_DEL_DATE>

</0OrderHeader>

SOAP web services

* The structure of a WSDL interface is:
<Edefinitions> :>

<types> >
:%ftypes> éi
<message >
Zéfmessage é;
<message >
:éfmessage é;
<portType >
:é!portType é;
<binding 3
:é!binding é;
<service> >
:éfservice> é;

<</definitions> >

Intelligent Infrastructure Design for l1oT - MiOT UCM .
Antonio Navarro WSDL interface structure

SOAP web services

e Where:

— definitions: is the root element and contains the elements that
define a web service.

— types: acts as a container for data type definitions using XML
schema definitions. These schemas define the data types of the
information using message elements.

SOAP web services

— message: these elements characterize abstract typed definitions of
the exchanged data. These elements reference the data types
defined in types

— portType: this element describes one or more set of abstract
operations supported by one or more endpoints. It uses operation
elements to describe these operations, which refer to the values
defined in message to characterize the function parameters.

SOAP web services

— binding: specifies a particular protocol for transport binding and a
data format specification for a portType element. (Butek, 2005) is a
good guide.

— service: identifies the web service in its name attribute. It models
multiple web services through a collection of port elements, which
indicate endpoints as a combination of transport bindings and
network addresses.

« port: provides the name and location of the system on which the web service
is located. Models an individual web service

SOAP web services

* Example of WSDL interface:

<? xml version="1.0" encoding="UTF-8"7>

< wsdl:definitions name="SumalmplementationService"
targetNamespace=""http://servicioAplicacion.negocio/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmIns:tns="http://servicioAplicacion.negocio/"
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/''>

< wsdl:types>
< schema xmIns="http://www.w3.0rg/2001/XMLSchema"'>

<import namespace="‘http://servicioAplicacion.negocio/""
schemalLocation=""suma_schemal.xsd"/>

</schema>
</wsdl - types>

SOAP web services

< wsdl:message name="add"'>
< wsdl:part name="parameters' element=""tns:sum'>
</wsdl :part>
</wsdl :message>
< wsdl :message name="‘addResponse'>
< wsdl:part name="parameters' element=""tns:sumResponse"'>
</wsdl :part>
</wsdl :message>

SOAP web services

< wsdl:portType name="Sum'>
< wsdl:operation name="add">
< wsdl:input name="sum' message="'tns:sum'>
</wsdl: input>

< wsdl:output name="'sumarResponse"
message=""tns:sumarResponse’''>

</wsdl :output>
</wsdl :operation>
</wsdl :portType>

SOAP web services

< wsdl:binding name=""SumalmplementationServiceSoapBinding"
type=""tns:Sum''>

< soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

< wsdl:operation name="add">
< soap:operation soapAction=
< wsdl:input name="'sum">
< soap:body use="literal"/>
</wsdl :input>
< wsdl:output name="addResponse''>
< soap:body use="literal'/>
</wsdl :output>
</wsdl :operation>
</wsdl:binding>

style="document"/>

SOAP web services

< wsdl:service name="SumAddImplementationService'>

< wsdl:port name="SumalmplementacionPort"
binding=""tns:SumalmplementacionServiceSoapBinding">

< soap:address
location=""http://localhost:55555/servicioSuma/services/Sumalmplement
acitonPort'/>

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

SOAP web services

 Example of WSDL interface

<? xml version="1.0" encoding="UTF-8"?>

< wsdl:definitions name="CalculolmplementacionService"
targetNamespace=""http://servicioAplicacion.negocio/"
xmIns:wsdI="http://schemas.xmlsoap.org/wsdl/"
xmIns:tns="http://servicioAplicacion.negocio/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:soap=""http://schemas.xmlsoap.org/wsdl/soap/'">

< wsdl:types>
< schema xmIns="http://www.w3.0rg/2001/XMLSchema'">

< Import namespace="http://servicioAplicacion.negocio/"
schemalLocation=""calculo _schemal.xsd"/>

</schema>
</wsdl :types>

SOAP web services

< wsdl:message name="add"'>
< wsdl:part name="parameters' element=""tns:sum'>
</wsdl :part>
</wsdl :message>
< wsdl:message name="'subtract'>
< wsdl:part name="parameters' element=""tns:subtract'>
</wsdl :part>
</wsdl :message>

SOAP web services

< wsdl:message name="‘addResponse’''>
< wsdl:part name="parameters' element=""tns:sumResponse'>
</wsdl :part>
</wsdl :message>
< wsdl:message name="'subtarResponse'>
< wsdl:part name="parameters' element=""tns:subtarResponse''>
</wsdl :part>
</wsdl :message>

SOAP web services

< wsdl:portType name="Calculation'>
< wsdl:operation name="subtract'>
< wsdl:input name="'subtract' message='""tns:subtract'>
</wsdl : input>

< wsdl:output name="'subtarResponse"
message=""tns:subtarResponse''>

</wsdl :output>
</wsdl :operation>
< wsdl:operation name="add">
< wsdl:input name="'sum" message=''tns:sum''>
</wsdl : input>

< wsdl:output name="'sumarResponse"
message=""tns:sumarResponse’''>

</wsdl :output>
</wsdl :operation>
</wsdl :portType>

SOAP web services

< wsdl:binding name="CalculationImplementationServiceSoapBinding"
type=""tns:Calculation'>

< soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

< wsdl:operation name="subtract'>
< soap:operation soapAction=""
< wsdl:input name="subtract'>
< soap:body use="literal"/>
</wsdl: input>
< wsdl:output name="'subtractResponse'>
< soap:body use="literal"/>
</wsdl :output>
</wsdl :operation>

style=""document''/>

SOAP web services

< wsdl:operation name="add">
< soap:operation soapAction=
< wsdl:input name="sum'>
< soap:body use="literal"/>
</wsdl: input>
< wsdl :output name="addResponse’'>
< soap:body use="literal"/>
</wsdl :output>
</wsdl :operation>
</wsdl:binding>

style=""document''/>

SOAP web services

< wsdl:service name="CalculolmplementacionService'>

< wsdl:port name="CalculolmplementacionPort"
binding=""tns:CalculolmplementacionServiceSoapBinding'>

< soap:address
location="http://localhost:55555/servicioCalculo/services/Calculolmple
mentacionPort'/>

</wsdl:port>
</wsdl:service>
</wsdl :definitions>

SOAP vs. REST

* This is one of the most frequently asked questions in
enterprise applications.

* The use of specific frameworks has brought the ease of use of
REST much closer to SOAP, however it is easier to use SOAP

services than REST, as long as the client language allows or
facilitates it.

e Despite the use of frameworks, the SOAP middleware layer is
more burdensome to applications than REST.

SOAP vs. REST

Depending on whether REST is used (orthodoxly or flexibly),
REST can perform only four types of operations or many. SOAP,
it can always perform many

SOAP and REST have transport layer (point to point) security
using HTTPS

SOAP has application layer security (end to end) and REST does
not. However, it puts a lot of overhead on the server

SOAP has distributed transactions and REST does not.

Service Oriented Architecture
(SOA)

Intelligent Infrastructure Design for the Internet of Things
Antonio Navarro

